

Highlights of AASLD

James Liu Yin
Aftab Ala
Institute of Liver Studies
Kings' College Hospital

Thanks to King's College Hospital Charity fund for supporting attendance at AASLD

Wilson's disease at EASL

Symposium: Wilsons disease: update on diagnosis and treatment General hepatology

Presentations

Title 1 Genetics and gene modifiers Hartmut Schmidt, Germany 2 Acute liver failure Anil Dhawan, United Kingdom 3 Treatment options Peter Ferenci, Austria 4 Compliance and monitoring of therapy Peter Ott, Denmark 5 Panel Discussion Panel: Hartmut Schmidt (Panellist), Anil Dhawan (Panellist), Peter Ferenci (Panellist), Uta Merle (Chair), Piotr Socha (Chair), Peter Ott (Panellist)

Wilson's disease at AASLD

Pediatric Liver Disorders SIG Program: The Many Faces of Wilson Disease and Emerging Therapies

Program Chairs: Drs. Jaime Chu and Nanda Kerkar

10:00 AM	Welcoming remarks	Dr. Nanda Kerkar
10:03 AM	Primer on copper metabolism, ATP78, and epigenetics	Dr. Valentina Medici
10:21 AM	Could this be Wilson disease? Diagnosis and management in children	Dr. Binita Kamath
10:39 AM	Diagnosis and management in adults (including pregnancy)	Dr. Frederick Askari
10:57 AM	Emerging treatments and current trials	Dr. Michael Schilsky
11:15 AM	Panel discussion and concluding remarks	All speakers

Parallel 5: New Developments in Genetic Diseases of the Liver

EFFICACY AND SAFETY OF ALXN1840 VERSUS STANDARD OF CARE IN WILSON DISEASE: PRIMARY RESULTS FROM AN ONGOING PHASE 3, RANDOMIZED, CONTROLLED, RATER-BLINDED TRIAL

PRIMARY HEPATOCYTE AND IPSC-DERIVED HEPATOCYTE-LIKE CELL TRANSPLANTATION TO TREAT ALPHA-1 ANTITRYPSIN DEFICIENCY ASSOCIATED LIVER DISEASE

CHARACTERIZING LIVER DISEASE (LD) PROGRESSION IN ALPHA-1 ANTITRYPSIN DEFICIENCY (AATD) WITH VERSUS (VS) WITHOUT LUNG DISEASE

COORDINATE REGULATION OF LIVER FERROPORTIN DEGRADATION AND SYNTHESIS DETERMINES SERUM IRON LEVELS IN MICE

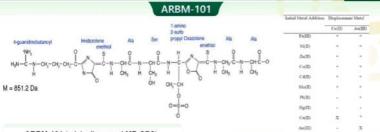
ARBM-101 AS A POTENTIAL THERAPEUTIC FOR WILSON DISEASE

ARBM-101

As a potential therapeutic for WILSON DISEASE

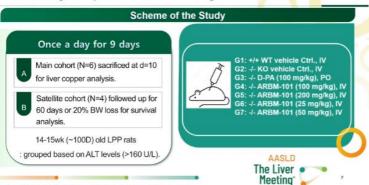
¹Josef Lichtmannegger, ²Eok Park, ³Ditte Emilie Munk, ²Byongkeol Min, ¹Banu Akdogan, ¹Claudia Einer, ⁴Judith Nagel,

*Dasol Kim; *TaeWon Kim; *Chunwon Jung, *Thomas Damgaard Sandahl, *Simon Hohenester, *Alan DiSpirito, Jeremy Semrau, "Andree Zibert, "Hartmut H. Schmidt, "Bernhard Michalke, "Weonbin Im; "So-Young Eun,

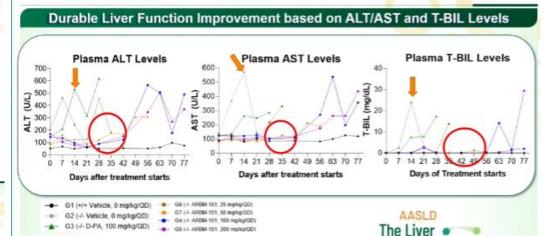

1,4 Hans Zischka, *9 Valentina Medici.

*Corresponding author.

ARBM-101 (MB-SB2): A high-affinity Cu-chelator

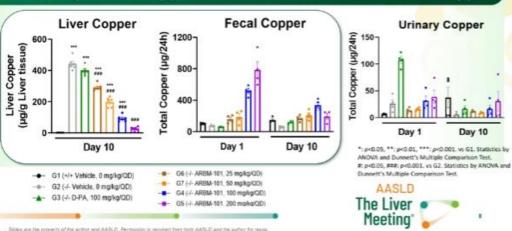

ARBM-101 (originally named MB-SB2) produced and secreted by Methylocystis sp. SB2.

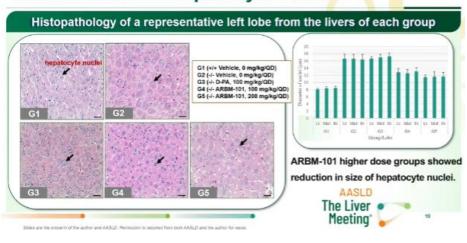
Krentz, B.D., et al., 2010; Biochem.; Bandow, N., et al., 2012; J. Inorg. Biochem.; Bandow N. and DiSpirito AA., 2014; Dissertation ARBM-101 is a selective Cu chelator.


AASLD

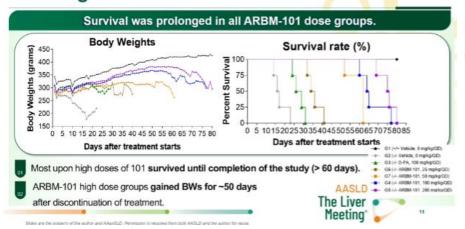
The Liver

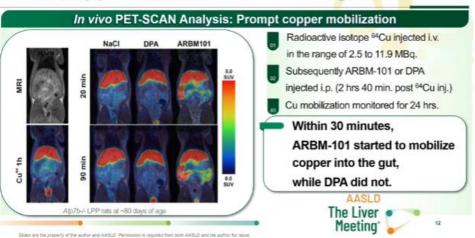
Nine-day Repeat Dose Study


Durable Liver Function Improvement

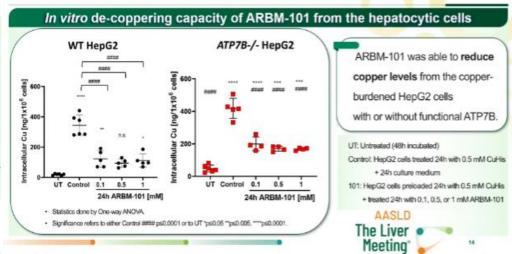

Copper excretion through bile/fecal axis

Dose-dependent copper excretion and reduction of liver copper

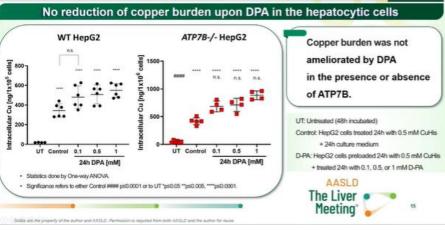

Meeting*


Normalization of hepatocyte nuclei

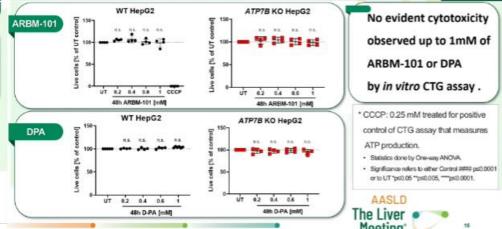
Prolonged Survival


Liver copper mobilization into the gut

Liver copper mobilization by ARBM-101 into bile


Liver Perfusion Experiment: prompt biliary copper mobilization Ato76-/- LPP at about 80 days of age Cumulative biliary copper Cumulative biliary zinc 250 ¥ 200 ð 100 cannulation of portal vein 10 20 Time Imini at infusion rate of 25 ARBM-101 immediately mobilized hepatic copper, ml/min with 30 mg for 1 hr. showing significantly more copper detected in the bile, Collection of bile via compared to the vehicle group. cannulation of bile duct every 10 minutes. Zinc was not affected showing no excretion more than basal levels. N=2 for buffer control. N=5 for ARSNA-101. "pxi2.05. ""pxi2.005. ""pxi2.001 One-way ANOVA. The Liver Meeting'

De-coppering Capacity of ARBM-101



No ameliorating effect of DPA on copper burden

SARRE are the property of the author and AASLD. Permission is required from both AASLD and the author for reco

Minimum Cytotoxicity of ARBM-101 in HepG2

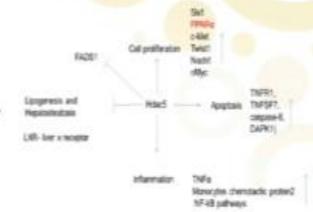
Conclusion

ARBM-101 as a potential therapeutic for WILSON DISEASE

- Massive fecal copper excretion → normalized liver copper contents, improved liver function, with improved hepatocyte histopathology
 - : indicated by improved LFTs, normal BWs, and prolonged survival.
- Positive effects were durable for +30 days after discontinuation of treatment
- Superior efficacy on overloaded Cu depletion from the WT and ATP7B-/- HepG2 cells in vitro.

Safety

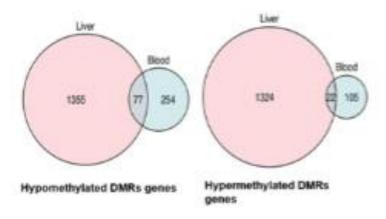
- No observed toxicity up to 200 mg/kg for 9 consecutive days in Atp7b-/- LPP rats.
- No evident toxicity up to 400 mg/kg in normal SD rats for 5 consecutive days (Data not shown).
- No cytotoxicity up to 1 mM either in WT or in ATP7B-/- HepG2 cells in vitro.

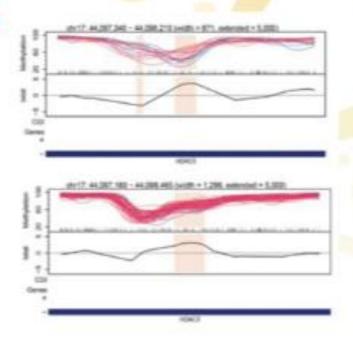

Primer on Copper Metabolism, ATP7B and Epigenetics

Valentina Medici, MD, MAS, FAASLD University of California Davis

HDAC: Histone deacetylases

- Histone deacetylases (HDACs) remove acetyl moieties from lysine residues of histone tails, resulting in transcriptional repression
- HDAC levels are greatly influenced by dietary factors, therefore lying at the interface between nutrition and epigenetic regulation of gene expression




HDAC5 plays fundamental roles in many biological events, including cell proliferation, differentiation, apoptosis, inflammation, and lipogenesis.

Shared DMRs associated genes in blood and liver

WD-specific DMRs in liver and blood overlap by gene

- About 1/3 of the genes near differentially methylated regions (DMRs) in the blood significantly overlapped with those identified in the liver
- Histone deacetylase 5 (HDAC5) was significantly hypermethylated with similar direction and gene body locations (FDR<0.05) both in the liver and blood</p>

Epigenomic signatures in liver and blood of Wilson disease patients include hypermethylation of liver-specific enhancers

Charles E. Mordaunt, Janine M. LaSalle & Valentina Medici, Epigenetics & Chromatin 2019

HDAC5

- Reduced levels in multiple models of WD
- Reduced with liver fibrosis progression
- Levels changed by copper levels and methyl groups availability

Key Takeaways

Epigenetic mechanisms at the intersection between DNA methylation and histone acetylation affect gene expression in Wilson disease

- Environment/diet affects phenotype
- Hepatic vs Neurological
- Treatment response modulation
- Response to gene therapy

TETRAETHYLENTETRAMIN AS FIRST LINE TREATMENT OF WILSON DISEASE - LONG-TERM RESULTS

Peter Ferenci1, Isabelle Mohr2, Albert Friedrich Stättermayer1, Rudolf Stauber3, Marlene Panzer4, Petra Steindl-Munda1, Ute Merle2, Michael Trauner1, Karl-Heinz Weiss5

1 Internal Med. III,

Medical University of Vienna, Austria, 2 Internal Med. IV, Heidelberg, Germany, 3 Internal Med. Medical University of Graz, Austria, 4 Internal Med., Salem Hospital, Heidelberg, Germany

Methods

Retrospective chart review

in 31 patients who received initial treatment with TETA (treatment with D-Pen for < 60 days was permitted)

Assessment of efficacy:

Changes in liver disease

based on clinical and laboratory (ALT levels, MELD and/or Child-Turcotte-Pugh score [CTP] in cirrhotic patients) data:

improvement

- ALT normalization
- full recompensation of previous decompensated liver disease
- decrease in MELD score (by ≥2) or in CTP stage

worsening:

- ALT increase > 2x upper limit of normal
- increase in MELD score (by ≥2) or in CTP stage
- hepatic decompensation
- death or liver transplantation

Changes in neuropsychiatric disease

based on clinical examination (by experienced neurologists) or self reported changes

Statistics:

The Kaplan-Meier method to estimate survival probabilities. Statistical analysis was performed with EasyMedStat (version 3.20.2: www.easymedstat.com).

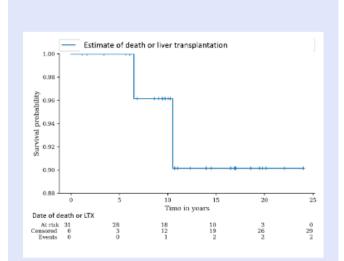
Outcome

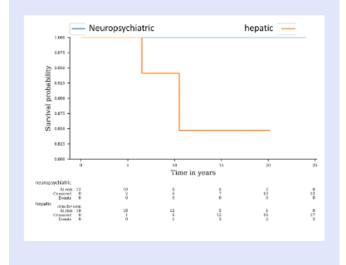
2 patients died:

- 1 due to hepatic adenocarcinoma (pankreo-biliary type) (treated for 7 years)
- 1 end stage liver disease (treated for 25 years)

3 patients underwent orthotopic liver transplantation:

- 1 decompensated in the third trimenon of pregnancy, she was transplantated 2 weeks after spontaneous delivery (treated for 6 years)
- 1 had psychiatric problems, did not attend the liver clinic for >3 years and presented with acute liver failure (treated for 14 years)
- 1 endstage liver disease, listed for LTX after 7 years of treatment (ascites, esophageal varices), further worsening after portal vein thrombosis, followed by complications (after 2 years on the waiting list)

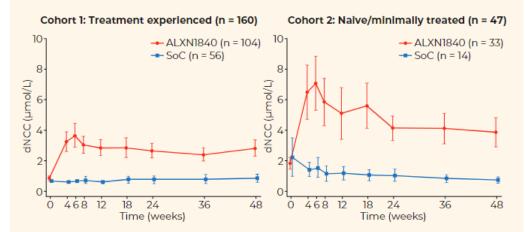

all other 26 patients are alive and doing well. No severe side effects to TETA treatment were observed.


Demographics

	Baseline	Clinical FU
male, n (%)	13 (41.9)
age, y*	27.9±12.4	39.9±13.2
treatment, y	12.0)±6.0
cirrhosis/biopsy, n/N	N 9/19	
hepatic Cu, μg/g	690±452	
neurologic, n (%)	12 (38.7)	
KFR, n (%)	16 (51.6)	
CPL, mg/dL	11.7±5.5	9.5±6.1
Serum-Cu, µg/dL	57.0±32.5	45.1±44.8
24h urine Cu, μg/d	850±1576	144±98.2**
ALT, U/L	97.9±136.1	51.1±54.5
bilirubin, mg/dL	1.7±3.4	3.1±7.1
INR	1.3±0.5	1.2±0.4
Platelets, G/L	179±80	176±84
CTP score, n (%)		
CTPA	25 (80.6)	26 (83.9)
CTP B	4 (12.9)	2 (6.5)
CTP C	2 (6.5)	3 (9.7)
MELD score	9.8±5.4	10.6±8.1

^{**}data available in 24 subjects, drug holiday before sampling in 11/24 subjects

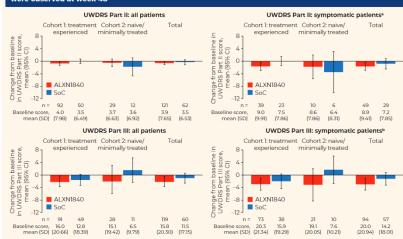
Survival analysis (Kaplan Meier)



Efficacy and safety of ALXN1840 versus standard of care in Wilson disease: primary results from an ongoing phase 3, randomized, controlled, rater-blinded trial

KARI, HEINZ WEIS!S, MICHE COTT, SELEN, AND CHEMPAN, AND C

Vacamentum Submitide Foung Stademotion Haddberg Embladering Commey, "And School of Medicine, Have Claim, C.C. U.S.A. "Shid Capacity and November Bull, London, Values, Polished Haddberg, Technology County Found Committee, U.S.A. "Shid Capacity and November Bull, Stade Haddberg, Committee, St

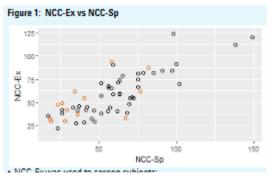

Figure 3. Primary endpoint: copper mobilization with ALXN1840 was rapid and sustained

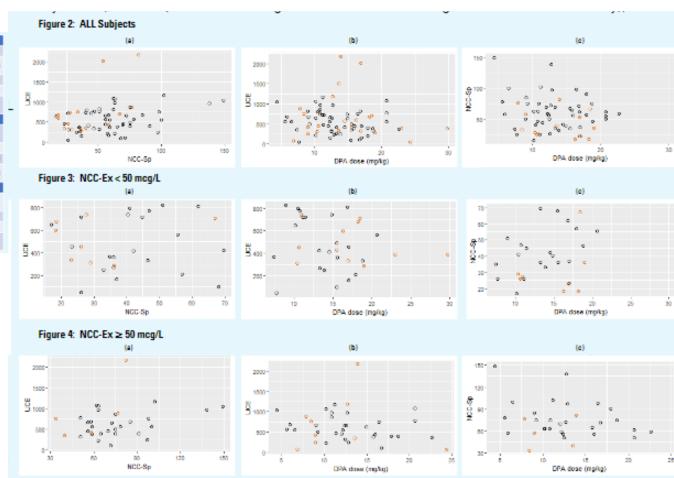
Mean daily direct NCC AUEC _{0-48W}		Cohort 1: Treatment experienced		2: Naive/ y treated	Total		
	ALXN1840 n = 104	SoC n = 56	ALXN1840 n = 33	SoC n = 14	ALXN1840 N = 137	SoC N = 70	
n ^a	91	51	27	12	118	63	
Mean (SD)	2.68 (2.118)	0.72 (0.643)	4.58 (2.526)	1.09 (0.484)	3.12 (2.347)	0.79 (0.629)	
LSM (SE)	2.50 (0.150)	0.87 (0.204)	4.76 (0.319)	0.96 (0.487)	3.18 (0.167)	1.00 (0.219)	
LSM difference (SE)	1.64 (0.254)		3.79 (0.584)	2.18 (0.244)		
p value	< O.0	0001	< 0.0	0001	< 0.0001		

*Patient numbers for calculation of mean; all patients were included in the calculation of LSM, LSM difference and p values. AUEC_{0.480} area under the effect curve from week 0 to week 48; dNCC, directly measured non-ceruloplasmin-bound copper; LSM, least-square mean; NCC, non-ceruloplasmin-bound copper; SD, standard deviation; SE, standard error; SoC, standard of care.

Figure 4. Secondary endpoint: trends toward modest improvements in UWDRS Part II and Part III scores were observed at week 48

		ALXN1840 n = 137 PY = 118.9		SoC n = 70 PY = 62.4			
	n (%)	Number of Events	Events per 100 PY	n (%)	Number of Events	Events pe 100 PY	
Any AE	119 (86.9)	577	100.1	54 (77.1)	192	86.5	
Any SAE	18 (13.1)	34	15.1	6 (8.6)	14	9.6	
Any non-SAE	117 (85.4)	543	98.4	53 (75.7)	178	84.9	
Death	2 (1.5)	2	1.7	0	0	0	
AE leading to withdrawal of study drug	8 (5.8)	10	6.7	1 (1.4)	2	1.6	
SAE leading to withdrawal of study drug	2 (1.5)	2	1.7	0	0	0	
AE by relationship							
Related	56 (40.9)	120	47.1	10 (14.3)	20	16.0	
Not related	106 (77.4)	457	89.2	53 (75.7)	170	84.9	
AEs reported in ≥ 5% of patients, preferred term							
ALT increased	20 (14.6)	25	16.8	2 (2.9)	2	3.2	
Nasopharyngitis	15 (10.9)	18	12.6	12 (17.1)	14	19.2	
Fatigue	13 (9.5)	16	10.9	3 (4.3)	3	4.8	
Headache	11 (8.0)	12	9.3	6 (8.6)	11	9.6	
Tremor	10 (7.3)	12	8.4	2 (2.9)	5	3.2	
Upper respiratory tract infection	9 (6.6)	10	7.6	3 (4.3)	3	4.8	
Nausea	8 (5.8)	8	6.7	3 (4.3)	3	4.8	
Pyrexia	8 (5.8)	8	6.7	0	0	0	
Anxiety	7 (5.1)	9	5.9	0	0	0	


Distribution of Laboratory Determined Free Copper and Urinary Copper Excretion in Wilson Disease Patients Regarded Clinically Stable on Maintenance d-Penicillamine: Observations from the CHELATETrial



Schilsky ML1, Sandahl T2, Czlonkowska A3, Zuin M4, Cassiman D5, Poujois A6, Ala A7, D'Hollander K8, Weiss K-H9, Kamlin COF10, Ott P2 on behalf of the CHELATE Trial Investigators

1.Yale School of Medicine, USA; 2. Aarhus University, Denmark; 3. Department (214) of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland; 4. ASST Santi Paolo e Carlo, University of Milan, Italy; 5. University Hospitals, Leuven, Belgium; 6. Hopital Fondation Adolphe de Rothschild, Paris, France; 7. Kings College London, UK; 8. IDDI, Belgium; 9. Salem Medical Center, Heidelberg, Germany; 10. Orphalan SA, France

All patients						
	Mean	Median	Min	Max	SD	IQR
NCC-Sp (mcg/L)	57.1	56.5	17.0	149.0	26.7	36.0, 71.05
UCE (meg/24hr)	586	494	47	2172	384	339, 751
ALT (U/L)	33.8	26.0	6.0	107.0	22.6	19.0, 43.0
DPA dose (mg/kg)	13.7	13.05	4.4	29.8	4.7	10.5, 16.8
(a) Patients with S	erum NCC-E	x < 50 mcg/L				
NCC-Sp (mcg/L)	39.3	36.1	17.0	69.6	15.4	26.0, 49.0
UCE (meg/24hr)	479	427	323	714	222	323, 714
ALT (U/L)	25.3	22.5	6.0	73	15.2	13.75, 33.0
DPA dose (mg/kg)	14.9	15.4	7.4	29.8	4.7	10.8, 17.45
(b) Patients with S	erum NCC-E	x ≥ 50 mcg/l				
NCC-Sp (mcg/L)	74.2	70.7	34.0	149.0	24.6	58.3, 84.3
UCE (meg/24hr)	636	557	55.9	2172	399	381, 870
ALT (U/L)	39.3	29.5	20.8	56.8	23.8	20.8, 56.8
DPA dose (mg/kg)	12.6	12.3	4.4	24.3	4.8	9.0, 15.8

Excreation in Patients on Freatment for Wilson Disease?

olat², Gül Yalçın Çakmaklı³, Tevhide ahin⁴, Aslı Pınar², Bülent Elibol³, Hatice asemin Balaban⁴ Hacettepe University - Medical Faculty, Jepartment of Internal Medicine,

ekir Mert Durukan¹. Merve Banu

pepartment of Internal Medicine, inkara, Turkey ²Hacettepe University - aculty of Medicine, Department of biochemistry, Ankara, Turkey Hacettepe University - Faculty of Medicine, Department of Neurology, Inkara, Turkey ⁴Hacettepe University - aculty of Medicine, Department of the of Medicine, Department of the official Medicine, Division of biastroentology, Ankara, Turkey

CONTACT

Bekir Met DURUKAN Hacettepe University, Medical Faculty, Department of Internal Mediciline Hacettepe Universitesi İç Hastalıkları ANKARA/TURKEY maturukan@hotmail.com +90543860039 EC/REC in daily practice.

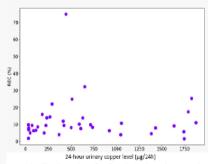
METHODS AND MATERIALS

- Prospective, cross-sectional, cohort study.
- 38 WD patients with and 43 controls with dyspepsia.
- Interventions:
 - Face-to-face interviews for the history of liver disease, comorbidities, and drug treatments,
 - · Review of an electronic system for laboratory results,
- 10 cc sample of blood for serum copper analysis by inductively coupled plasma mass spectrometry (ICP-MS).
- REC = EC/total copper
- Since controls rejected to collect urine, urinary copper was measured only in WD patients by using atomic absorption spectrometry.

RESULTS

- The median age in controls and patients was similar (28 and 31 years; p=0.393).
- 46% of controls and 50 % of patients were male (p=0.928).
- · The median age at diagnosis of WD was 10 years.
- There was 55% off only hepatic WD, 42% off both hepatic and neurologic WD, and 3% off only neurologic WD. Psychiatric disease was present in 24% of patients.
- Medical treatment:
 - · 62% D-penicillamine and zinc,
- 16% D-penicillamine alone.
- 16% trientine and zinc.
- · 3% trientin
- 3% zinc alone
- Median 24-hour urinary copper excretion widely ranged (472.5 (32.9-1872) µg/day).
- Serum copper tests:
 - Total serum copper was higher in controls (16.92 vs. 10.55 µmol/l; p<0.001).
 - EC levels were similar in patients and controls (0.53 vs. 0.81 µmol/l; p=0.101).
 - REC was lower in controls than in patients (2.93% vs. 9.25%; p<0.001).
- In comparison with patients with both hepatic and neurological involvement, patients with only hepatic-WD had higher serum total copper (11.2 vs. 5.75 µmol/l; p=0.025), EC (1.02 vs. 0.63 µmol/l; p=0.068) and 24-hour urinary copper excretion (591.4 vs. 406.19 µg/day; p=0.617), although REC was similar (9.25% vs. 9.82%; p=0.37).

meaning remaining real	-,	4,214	-,	4,144		-,	-,	
Hemoglobin; g/dl	-0,03	0,797	-0,004	0,972	0,015	0,895	0,398	0,013
White Blood Cell Count; x10 ^a /ml	0,315	0,004	-0,047	0,682	-0,253	,026	-0,085	0,613
Platelet Count x10 ¹ /ml	0,554	<0,0001	-0,117	0,309	-0,507	<0,0001	-0,205	0,217
AST; IU/L	-0,289	0,01	-0,02	0,859	0,174	0,128	0,189	0,255
ALT; IU/L	-0,237	0,037	0,101	0,377	0,216	0,057	0,092	0,582
GGT; IU/L	-0,382	0,001	0,163	0,154	0,36	0,001	0,212	0,201
ALP; IU/L	-0,381	0,001	0,033	0,774	0,338	0,003	-0,027	0,873
Total Bilirubin; mg/dl	-0,252	0,029	-0,012	0,916	0,256	0,026	0,204	0,22
Direct Bilirubin; mg/dl	-0,248	0,032	0,01	0,929	0,27	0,019	0,004	0,98
Albumin; g/dl	0,199	0,081	-0,206	0,068	-0,283	0,012	-0,202	0,229
Total Serum Protein; g/dl	0,037	0,761	-0,098	0,421	-0,083	0,496	-0,389	0,016
INR	-0,269	0,102	-0,048	0,776	0,248	0,134	-0,039	0,816
Creatinine; mg/dl	-0,013	0,912	-0,012	0,917	-0,034	0,772	0,119	0,477
LDL; mg/dl	-0,07	0,603	-0,082	0,539	-0,038	0,777	0,08	0,71
Triglyceride; mg/dl	-0,246	0,065	0,179	0,179	0,238	0,075	0,193	0,355
AFP; ng/ml	-0,040	0,824	0,103	0,563	0,161	0,365	0,182	0,303
MELD-Na Score	-0,243	0,141	-0,035	0,833	0,231	0,163	-0,17	0,92
FIB-4 Score	-0,291	0,1	0,058	0,614	0,272	0,17	0,308	0,06
Ceruloplasmin; mg/dl	0,56	<0,0001	0,348	0,032	-0,345	0,034	-0,039	0,816


Serum copper tests were associated with several clinical parameters:

• The correlation of platelet count with total copper (r=0.554; p<0.0001) and

- REC (r=-0.507; p<0.0001) were in opposite direction.
- ALP and GGT were negatively correlated with serum total copper (r=-0.381; p=0.001 and r=-0.382; p=0.001, respectively) and positively correlated with REC (r=0.338; p=0.003 and r=0.36; p=0.001, respectively).
- Ceruloplasmin positively correlated with serum total copper (r=0.56; p<0.0001) and EC (r=0.348; p=0.032).

None of the serum total copper tests did not correlate with 24hours urinary copper excretion.

REC did not correlate with 24-hours urinary copper excretion.

Distribution Plot of Wilson's Patients' REC and 24-Hour Urine Copper Excreation urinary copper excretion and EC representing serum-free copper.
The inability to find such a positive correlation in our study can be explained by several reasons:

- Urinary loss of copper and other heavy metals is shown to be associated with proteinuria. So, (non)selective proteinuria for any reason will increase copper excretion independent from the level of serum-free copper. So serum EC level will be lower than expected due to urinary loss of copper., meaning that EC (free copper) and urinary copper (free copper and proteinuria-associated copper) may be representing different pools of copper.
 The type of chelator treatment may be confounding since, it is
- known that penicillamine can cause proteinuria.

 Unlike EC, urinary copper excretion depends on compliance
- with chelator treatment and glomerular filtration rate.

CONCLUSIONS

Serum EC/REC measurements are technically difficult, although it is more practical than 24-hour urine collection which is a test of choice in routine clinical practice to evaluate body copper load.

There was no association between serum copper tests and urinary copper excretion in this study. The possible explanations for this lack of correlation might be the facts

that:

- These tests may be showing different copper pools in the body,
- Type and/or compliance to chelators may be changing serum and urine copper distribution,
- Renal function and proteinuria may be affecting urinary copper excretion,
- Methodological differences in serum and urine copper measurements may be misleading.

Future studies controlling these factors would reveal the potential of serum tests as an alternative to urine collection for evaluating body copper load in WD patients on treatment.

REFERENCES

- 1.El Balkhi, S., et al., Relative exchangeable capper: a new highly sensitive and highly specific biomarker for Wilson's disease diagnosis. Clin Chim Acta, 2011. 412(23-24): p. 2254-80.
- El Balkhi, S., et al., Determination of ultrafiltrable and exchangeable copper in plasms: stability and reference values in healthy subjects. Anal Bloanal Chem., 2009. 394(5): p. 1477-84.
 Morgan, S.M. and N.D. Zantek, Therapeutic plasma exchange for fulminant hepatic

failure secondary to Wilson's disease. J Clin Aphar, 2012. 27(5): p. 282

4. Gubler, C.J., et al., Studies on copper metabolism. IX. The transportation of copper in

blood. J Clin Invest, 1953. 32(5): p. 405-14

ETHNICITY DOES NOT PREDICT LONG-TERM OUTCOME OF LIVER DISEASE IN PAEDIATRIC-ONSET WILSON DISEASE: A NORTH AMERICAN MULTI-ETHNIC COHORT

Mohammed D. Ayoub, Shannon M. Vandriel, Mila Valcic, Shonette M. Bhagwandin, Simon C. Ling, Vicky L. Ng, Eve A. Roberts, Binita M. Kamath
Division of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children, Toronto, Canada

PATIENTS & METHODS

A single-centered, retrospective study involving clinically and/or genetically diagnosed WD probands seen at The Hospital for Sick Children between 1962 and 2022. Patients diagnosed by family screening or who had co-existing liver disease were excluded.

Hepatic presentation was classified as compensated cirrhosis in patients with portal hypertension (PHTN), decompensated cirrhosis in patients with PHTN AND ascites requiring diuresis <u>OR</u> variceal bleeding requiring therapeutic endoscopy. All acute liver failure patients met the PALF definition.

Event-free survival (EFS) was defined as the length of time subjects were free of hepatic decompensation (ascites requiring diuresis or variceal bleeding), liver transplantation, or liver-related death.

RESULTS

Out of 56 WD probands (28 male), 52% (n=29) were CAUC, 21% (n=12) were SA, and 27% (n=15) were from other ethnicities from 11 different countries. Most (87%) study subjects presented with hepatic WD, with a median age of 11.5 years (IQR 8 - 14) and were followed for a median of 4.2 years (IQR 1.9 - 6.7).

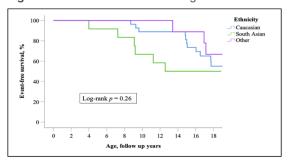
Compared to 27 non-CAUC, CAUCs had a later disease onset and were less likely to present with chronic liver disease.

CONCLUSION

Although SA probands were more likely to be younger at presentation and when experiencing a liver-related event, ethnicity did not influence long-term outcome of paediatric WD in a resource-rich setting.

Female preponderance is a well-recognized feature of severe WD. Our study reveals that this holds true regardless of ethnicity.

Further multi-centered studies with larger sample sizes are crucial to re-confirm our novel findings.


Table 1. Clinical Presentation and Outcome of Caucasian vs non-Caucasian WD Probands

	Non-CAUC	CAUC	p-value
n	27	29	
Demographics, % (n)			
Female	33% (n=9)	66% (n=19)	0.01
Age at presentation, y (IQR)	10 (7-12)	14 (10-15)	0.002
Hepatic presentation, %	26	28	
Chronic liver disease	73% (n=19)	32% (n=9)	0.003
Compensated cirrhosis	7.7% (n=2)	25% (n=7)	0.14
Decompensated cirrhosis	3.8% (n=1)	14.3% (n=4)	0.35
Acute liver failure	15.4% (n=4)	28.6% (n=8)	0.24
Long-term outcomes			
Hepatic decompensation event, % (n)	33.3% (n=9)	41% (n=12)	0.53
Age at first event, y (IQR)	11.2 (9.1 – 13.4)	15 (13.5 – 16.8)	0.08

In contrast, SAs were younger than non-SAs (n=44) at presentation and when experiencing a hepatic decompensation event despite having comparable disease severity at presentation.

EFS showed no significant differences in long-term outcome between CAUCs and non-CAUCs by 18 years (log-rank p=0.86), between SAs and non-SAs (log-rank p=0.14), and between SAs and CAUCs (log-rank p=0.26).

Figure 1. Event-free Survival Among All Ethnicities

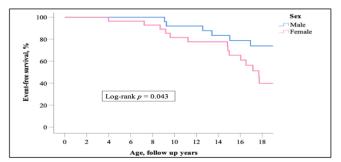


Table 2. Clinical Presentation and Outcome of South Asian vs non-South Asian WD Probands

	SA	Non-SA	p-value
n	12	44	
Demographics, % (n)			
Female	33% (n=4)	55% (n=24)	0.19
Age at presentation, y (IQR)	10.5 (8.5-11)	13 (8-14)	0.03
Hepatic presentation, %	11	43	
Chronic liver disease	63.6% (n=7)	49% (n=21)	0.38
Compensated cirrhosis	18.1% (n=2)	16.3% (n=7)	1.0
Decompensated cirrhosis	0%	11.6% (n=5)	0.57
ALF	18.1% (n=2)	23.2% (n=10)	1.0
Long-term outcomes			
Hepatic decompensation event, % (n)	50% (n=6)	34% (n=15)	0.33
Age at first event, y (IQR)	9.2 (7.7 – 10.7)	15 (14.1 – 17)	0.002

By 18 years old, females were found to have significantly higher incidence of hepatic decompensation events than males, regardless of ethnicity.

Figure 2. Event-free Survival Comparing Females to Males

Exchangeable and Relative Exchangeable Copper Correlate with Multiparametric Liver MRI Parameters in Patients with Wilson Disease

Bekir Mert Durukan^a, Merve Banu Polat^a, Gül Yalçın Çakmaklı^a, İlkay İdilman^a, Tevhide Şahin^a, Aslı Pınar^a, Muşturay Karçaaltıncaba^a, Bülent Elibol^a, Hatice Yasemin Balaban^a

Hacettepe University - Medical Faculty, Department of Internal Medicine, Ankara, Turkey *Hacettepe University - Faculty of Medicine, Department of Biochemistry, Ankara, Turkey *Hacettepe University - Faculty of Medicine, Department of Neurology, Ankara, Turkey Hacettepe University - Faculty of Medicine, Department of Radiology, Ankara, Turkey Hacettepe University - Faculty of Medicine, Department of Internal Medicine, Division of Gastroentology, Ankara, Turkey

Introduction

Exchangeable copper (EC) and relative exchangeable copper (REC) are serum tests reported to be superior to urinary copper excretion for diagnosis of Wilson's disease (WD), but they have not been validated for usage in routine Daily practice.

MRI is the most sensitive radiologic method for diagnosis and follow-up of liver disease. Multiparametric MRI methods enable simultaneous measurement of several liver parameters: MR elastography (MRE), proton density fat fraction (PDFF), T1, T2, and T2* mapping, R2*.

This study was aimed to investigate the correlation of EC and REC with clinical and multiparametric liver MRI parameters.

Methods and Materials

This prospective, cross-sectional, cohort study included 35 WD patients. The clinical parameters were collected through face-to-face interviews for the history of WD, and from electronic system records of laboratory results. A 10 cc sample of blood was taken for serum total serum copper and EC analyses

which were done by inductively coupled plasma mass spectrometry (ICP-MS). REC was calculated as the ratio of them (REC = EC/total serum copper). Multiparametric liver MRIs were performed by using a 1.5-T MR imaging system

(Magnetom Aera, Siemens Healthcare, Erlangen, Germany). Multiparametric liver MRIs were reported by the same expert radiologists for liver parenchymal stiffness (MRE), liver fat content (PDFF), and iron accumulation

(corrected T1, cT1). T1, T2, T2*, and R2* measurements were made, and cT1 was calculated according to the following formula: T1-420+20*(T2*).

Results

The median age was 32 (18-58) years, and 54% was male.

The median age at diagnosis of WD patients was 10 years.

There was %97 had hepatic involvement.

The median liver MRE value was normal (2.45 (1.71-6.2) kPa) with a distribution o:

- 69% no fibrosis.
- 6% Stage 1 fibrosis.
- · 11% Stage 2 fibrosis,
- 8% Stage 3 fibrosis.
- · 6% Stage 4 fibrosis.

MR-PDFF technique showed mild (5-14%) adiposity in 38% of patients, and moderate (15-20%), or severe (>20%) hepatosteatosis was not detected in any patients.

Multiparametric MRI findings of Wilson Patients

Median Liver Parenchymal Stiffness; (n=35); (Min-max); kPa	2,45(1,71-6,2)
Liver Parenchymal Stiffness; (n=35); n (%)	
Normal	24 (69%)
• Stage1	2 (6%)
 Stage2 	4 (11%)
 Stage3 	3 (8%)
• Stage4	2 (6%)
Median Liver Fat Ratio by MRI-PDFF; (n=26); (Min-max); %	3.75 (1.4-11.5)
MR-PDFF ile Karaciğer Yağ Oranının Sınıflaması; (n=26); n (%)	
Normal (<5%)	16 (62%)
 Mild (5-14%) 	10 (38%)
 Moderate (5-19%) 	0 (0%)
 Severe (>20%) 	0 (0%)
T2*; (n=34);	28.4 (13.8-38.2)
Median (Min-max); ms	
T2; (n=40); Median (Min-max); ms	48.5 (43.5-55.8)
cT1; (n=39); Median (Min-max); ms	948.5 (550-1305)
T1; (n=35); Median (Min-max); ms	780 (496-1215)
R2*; (n=26); Modian (Min mark) 1/ms	29.4 (25.6-57.4)

The liver stiffness was positively correlated with and age (r=0.514; p=0.002). AST (r=0.445; p=0.007), GGT (r=0.549; p=0.001), ALP (r=0.365; p=0.031), INR (r=0.404; p=0.016), creatinine (r=0.344; p=0.043), FIB-4 score (r=0.694; p<0.0001); and negatively correlated with white blood cell (r=-0.49; p=0.003) and platelet (r=-0.607;

The fat fraction was in positive correlation with serum triglyceride level (r=0.532;

T2* was a negatively correlated with total bilirubin (r=-0.394; p=0.019) and creatinine (r=-0.382: p=0.023).

T2 was negatively correlated with hemoglobin (r=-0.405; p=0.016).

R2* indicating iron accumulation in the liver was negatively correlated only with GGT without statistical significance (r=-0.306; p=0,129) .

There was no correlation between cT1 and any clinical or laboratory parameters.

Correlation Analysis of Liver Multiparametric MRI Results with Clinical and Laboratory Parameters

		ess(MV)		Fat Fadio N)	T (m			2* 46		red red		raji maji		(T). (Fig)
		P	1	P	,	,	r	,	,	P	'	P	-	9
Age; Year	0,514	0,0112	0,248	QEIS	0,343	0,236	0,094	0,992	6,112	0,584	0,143	0,654	0,225	0,200
Remogletin; g/dl	0,295	0,588	0,193	0,345	4,48	0,641	0,254	0,140	0,790	0,352	-0,405	0,006	-0.24	0,172
White Blood Cell Count; x10" /ml	4,40	0,083	0,357	0.073	-0,004	0,079	0,215	0,214	-0,044	0,829	4,006	0,972	-0.04	0,822
Hatelet Count x32° /eli	-0,687	<0,000L	-0,104	CEE	-0,094	0,861	0,862	0,646	0,011	0,959	4,094	0,581	4,045	0,800
AST, FAA.	0,445	0,0117	0,258	0.211	0.045	0,642	0,281	0,347	6,008	6,968	0.045	0,795	0,064	0.801
ACT; RUP.	0,143	0,349	6,312	0,12	-0,034	100,0	0,238	0,109	-0,121	£;554	4,004	0,847	0,853	0,764
GGT; ILIJE	0,549	0,081	0,305	0,117	0,107	0,678	-0,025	0,888	-0,306	0,129	0,187	0,542	0,18	0,300
AUP; FUE	0,365	0,031	0,197	0,335	0.054	0,458	0,133	0,448	0,190	0,350	0,054	0,756	0,134	0,486
Tetal Bilirabin; mg/dl	9,115	0,374	0,159	0,638	0,194	0,738	0,314	6,619	6,18	0,379	0,156	0,371	43114	0,519
Total Protein g/dl	0,317	0,064	6,147	0,675	0,313	0,851	0,257	0,137	6,158	0,439	0,113	0,519	4,056	0,712
ret .	0,404	6,014	-0,093	0,85	0.299	0,472	0,816	0,860	0,044	0,484	0,299	0,081	0,309	0.960
Creatinine; mg/dl	0,344	6,043	6,178	0,284	-0,156	0,152	0,312	0,623	6,369	6,252	-0,116	0,586	4,000	0,854
Triglyceride; mg/di	-0,105	0,635	0,132	0,813	-0,060	0,290	-0,136	0,536	0,126	0,576	-0,060	0,794	4,011	QASS
MELD Na Score	0,298	0.082	0,121	0,52	0,314	0,658	0,112	0,522	0,083	0,688	0,314	0,067	4,089	0,999
FB-4 Icom	0,664	<0,000L	6,137	0,569	0,304	0,695	0,004	0,983	-0,179	0,381	0,134	0,554	0,11	0,534
Caralopiaanin; mg/d	0,145	D/ARS	-4,067	0,781	-6/01	0,660	0,317	0,064	-0,000	£(987	4,013	0,941	0,150	0,214
Serum Total Coppor (µmal/S)	0.111	0.484	0,153	0,454	0,11	0,13	0,214	0,217	0,145	0,48	1300	0,876	0.122	0,52
Exchangeable-Copper (arvs(1))	0,041	0,727	0,534	0,806	0,371	0,629	-0,158	0,366	6,101	E;623	4,145	0,464	0,188	0,319
Relative Euchangeable Copper (%)	0,119	0,362	0,305	0,13	0,229	0,186	-0,422	0,012	0,240	0,297	4,115	0,588	0,216	0,090

Discussion

EC was a positively correlated with MR-PDFF (r=0,534; p=0,005) and T1 (r=0.371; p=0.028), while REC was a negatively correlated with T2* (r=-0.422; and p=0.012).

The parameters for liver fibrosis at multiparametric MRI are cT1, T1, and T2 relaxation times. The positive correlation between EC and T1 suggests that T1 also increases with copper accumulation in the liver.

T2* and R2* values are parameters used to measure iron accumulation in the liver. Depending on the accumulation of iron in the liver, it is expected that the T2* value will decrease and the R2* value will increase. There is no previous study on the T2* value in the liver in WD. In this study, a negative correlation was found between REC (r=-0.422: p=0.012) and T2*.

Conclusions

Multiparametric liver MRI is sensitive for showing hepatic involvement in WD. As alternative tests for evaluating body copper load, EC and REC are correlated with the parameters of MRI for steatosis, inflammation, and fibrosis.

Further studies with a larger number of patients are needed to establish the correlation between serum copper tests and multiparametric liver MRI findings.

References

- 1. El Balkhi, S., et al., Relative exchangeable copper: a new highly sensitive and highly specific biomarker for Wilson's disease diagnosis. Clin Chim Acta, 2011. 412(23-24): p. 2254-60.
- El Balkhi, S., et al., Determination of ultrafiltrable and exchangeable copper in plasma: stability and reference values in healthy subjects. Anal Bloanal Chem, 2009. 394(5): p. 1477-84.
 Pavildes, M., et al., Multiparametric magnetic resonance imagina for the assessment of non-alcoholic fotby liver disease seventy. User Int., 2017. 37(7): p. 1065-1073.
- 4. Unal, E., I.S. Idliman, and M. Karçaaltınıcaba, Multiparametric or practical quantitativa liver MRI: towards millisecond, fat fraction, kilopascal and function era. Expert Rev Gastroenterol Hepatol, 2017. 11(2): p. 167-182.

Exchangeable and Relative Exchangeable Copper Levels were Similar in Wilson Disease Patients with and without of Cranial MRI Involment

Bekir Met DURUKAN

Hacettepe University, Medical Faculty, Department of Internal Medicine Hacettepe Üniversitesi İç Hastalıkları ANKARA/TURKEY mertdurukan@hotmail.com +905438602032 Bekir Mert Durukan¹, Merve Banu Polat², Gül Yalçın Çakmaklı³, Şafak Parlak⁴, Tevhide Şahin⁵, Aslı Pınar², Kader Karlı Oğuz⁴, Bülent Elibol³, Hatice Yasemin Balaban⁵

- ¹ Hacettepe University Medical Faculty, Department of Internal Medicine, Ankara, Turkey
- ² Hacettepe University Faculty of Medicine, Department of Biochemistry, Ankara, Turkey
- ³ Hacettepe University Faculty of Medicine, Department of Neurology, Ankara, Turkey
- ⁴ Hacettepe University Faculty of Medicine, Department of Radiology, Ankara, Turkey
- ⁵ Hacettepe University Faculty of Medicine, Department of Internal Medicine, Division of Gastroentology, Ankara, Turkey

INTRODUCTION: The cranial MRI is the golden standard radiologic technique for diagnosis and follow-up of neurologic Wilson's disease (WD). Exchangeable copper (EC) and relative exchangeable copper (REC) have diagnostically superior to urinary copper excretion, but their role in follow up have not been evaluated.

This study was aimed to investigate the relationship between serum copper tests and cranial MRI findings among patients treated for WD.

METHODS: This prospective, cross-sectional, cohort study included 36 patients with WD in whom face-to-face interviews for medical history and a review of electronic system records for laboratory results were done.

Analyzes for EC and total serum copper were done from 10 cc of a blood sample by using inductively coupled plasma mass spectrometry (ICP-MS) (Perkin Elmer Nexion 2000). For preparation UF; serum was diluted with EDTA (3 mg/L) (1:1) and incubated for precisely 1 hour. Then the mixture was ultrafiltrated on Amicon Ultra-4 (Millipore, Molsheim, France). The REC was calculated as the ratio of EC to total serum copper.

All patients underwent cranial MRI on a 1.5-T MR imaging system (Magnetom Aera, Siemens Healthcare, Erlangen, Germany). The gray matter lesions of WD patients were examined by the same neuroradiologists. A score was assigned to each of the bilateral lenticular nuclei (pallidum and putamen), caudate nuclei, thalamus, pons, mesencephalon, and dentate nuclei involvement. The cranial MRI score ranged between 0 to 6 in WD patients.

RESULTS: The median age was 32 (18-58) years, and 53 % of patients were male. The median age for diagnosing WD was 10 years. Cranial MRI revealed WD involvement in 45% of patients, and 14% of patients had cranial MRI findings without clinical symptoms of neuro-WD. The distribution of the patient's subgroups according to cranial MRI scores was as follows:

- · 56% no gray matter involvement,
- 33% Score 1-2, 8% Score 3-4, 3% Score 5-6.

Patients with and without gray matter MRI involvement had similar total serum copper (10.67 vs 6,85 µmol/l p=0.168), EC (0.94 vs. 0.65 µmol/l; p=0.158), REC (8.55% vs. 9.47%; p=1) and 24-hour urinary copper excretion (558.56 vs 472.56 µg/day; p=0.582).

	No Gray Matter Involment	Gray Matter Involment	р
Serum Total Copper (μmol/l)	10.67	6.85	0.168
Exchangeable Copper (µmol/l)	0.94	0.65	0.158
Relative Exchangeable Copper (%)	8.55	9.47	1
24 h Urinary Copper (μg/24 h)	558.56	472.56	0.582

DISCUSSION: The literature on neuro-WD has been shown that structural and functional changes can be found in the brain even if the patients do not have neurological/psychiatric symptoms or signs. Also, Poujois et al. have been shown that the serum EC level is higher in newly diagnosed WD patients with neurologic and hepatic involvement than in those with isolated hepatic involvement.

In this cross-sectional study, the reason for similar EC and REC levels in patients with and without cranial involvement is thought to be due to the depletion of cranial copper load under chelator treatment

CONCLUSION: Cranial MRI was more sensitive than clinical symptoms for detecting cranial involvement in WD.

However, EC and REC levels were similar in WD patients with and without of cranial MRI involvement.

Follow-up cohort studies could show a correlation between EC and REC levels with cranial MRI scores or clinical parameters.

Objective Biochemical Endpoints in an Open-Label Randomized Trial of Chelation Therapy in Wilson disease; Can Subject Behavior in a Trial be Identified?

Schilsky ML1, Sandahl T2, Czlonkowska A3, Zuin M4, Cassiman D5, Poujois A5, Ala A7, D'Hollander K8, Weiss K-H9, Kamlin COF10, Ott P2 on behalf of the CHELATE Trial Investigators

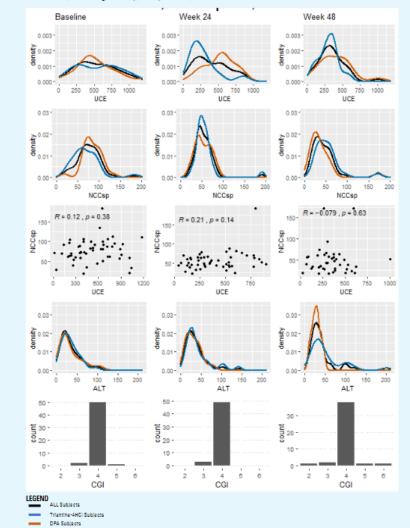
1.Yale School of Medicine, USA; 2. Aarhus University, Denmark; 3. Department (2°) of Neurology, Institute of Psychiatry and Neurology, Warsaw, Poland; 4. ASST Santi Paolo e Carlo, University of Milan, Italy; 5. University Hospitals, Leuven, Belgium; 6. Hdpital Fondation Adolphe de Rothschild, Paris, France; 7. Kings College London, UK; 8. IDDI, Belgium; 9. Salem Medical Center, Heidelberg, Germany; 10. Orphalan SA, France

Background:

- Adherence to treatment is critical for minimizing morbidity and avoiding reduced life expectancy for individuals with Wilson disease (WD)
- Designing placebo-controlled trials evaluating new therapies for WD are not ethical to evaluate long-term
 exposures to novel therapies; interventions are thus compared against standard of care
- Blinding of subjects and investigators of the intervention is not always feasible.
- An open label trial such as the Chelate trial¹ (NCT03539952) used an objective, quantifiable (non ceruloplasmin copper; NCC-Sp) primary outcome to minimize assessment bias
- Evaluation of clinical and biochemical stability was assessed by an independent adjudication committee (IAC) of 3 WD experts prior to randomization to confirm eligibility and post-randomization to ensure objectivity at primary (24-wk) and extension (48-wk) phase endpoints, as they were masked to subject's allocated therapy
- · However, subjects with knowledge of the intervention may be a source of bias, especially adherence.

Aims

 To describe changes in physician clinical (site PI) and selected laboratory assessments over the course of the CHELATE trial in a post-hoc analysis of data to identify trial effect, independent of treatment allocation


Method:

- Clinically stable patients on D-penicillamine (DPA) ≥1y and on average diagnosed for > 20 years were
 enrolled into an open label trial
- At the end of a 12-wk block to allow for stabilization of dose, patients who were confirmed by site PI and IAC to be clinically stable, were randomized (baseline) to either DPA or trientine tetrahydrochloride (trientine-4HCI)
- Stability was assessed using clinical global impression of change (CGIC) scores by site PI, and efficacy
 and safety of the intervention was assessed by evaluation of signs of liver disease, neurological (UWDRS)
 examination and laboratory investigations including NCC-Sp using novel methodology², 24-hour urinary
 copper excretion (UCE) and liver function tests
- Data were compared at baseline (end of the 12-week run-in period) at 24- and 48-weeks post randomization; the IAC confirmed clinical stability in all subjects post randomization

Results:

- Across all recruiting centers, 77 (38 female) subjects were enrolled with 53/77 (69%) randomized after 12wk of baseline period (demographics table)
- UCE was widely distributed, breeching guidance targets (200 500mcg/L) at baseline
- At week 24, UCE peak with trientine-4HCl was narrower and left shifted; at week 48 although the density for DPA shifted to the left, it showed a smaller peak with a wider distribution
- A similar pattern of increased density and shift to the left was observed with NCC-Sp and alanine aminotransferase (ALT) at week 24 and 48 irrespective of treatment
- No correlation was observed between UCE and NCC-Sp, although at study end this changed from a
 positive to negative (inverse) relationship

Baseline Characteristics	DPA (N = 27)	Trientine-4HCl (N = 28)
Age (years)	45.2 (13.4)	42.0 (15.6)
Female – no. (%)	16 (59%)	12 (46%)
Weight (kg)	72.7 (16.1)	76.6 (14.4)
Dose of DPA at randomization (mg)	900 (276)	891 (353)
Global neurological (UWDRS) score at baseline*	6.0 (1.0, 15.0)	4.5 (2.0, 8.0)

Conclusions:

- In an open label study, comparing DPA with trientine-4HCl, where subjects remained clinically stable throughout, UCE and NCC showed less variation during course of the study, suggesting a trial effect
 Subjects in the CHELATE trial may have become more compliant with diet and medication, independent of open study design and allocated therapy
- These data demonstrate that WD patients, even those on maintenance therapy, benefit from participating in a randomized trial

Preliminary findings for accurate non-ceruloplasmin copper (ANCC): Potential monitoring biomarker in medically treated Wilson Disease

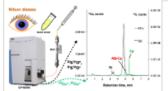
Schilsky ML1, To U1, Ala A2, Coskun A1, Embel V1, Harrington C2

1. Yale University, New Haven USA 2. Royal Surrey NHS Hospital, Guildford UK

BACKGROUND

Treatment monitoring for Wilson disease (WD) involves clinical and biochemical testing. Accurately determined non-ceruloplasmin copper (ANCC) is a new assay (1) proposed to be a useful biomarker for determining overall copper status in WD patients on medical therapy. There are few data on ANCC in WD patients on medical therapy.

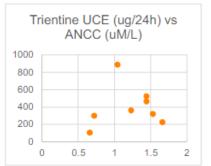
AIM

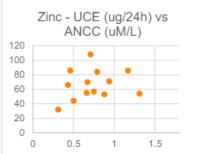

To correlate ANCC with data for copper status in treated WD patients to begin to determine if ANCC is a useful biomarker for treatment monitoring.

MATERIALS AND METHODS

The cohort included patients enrolled in the WD Registry (data coordinating center and biorepository at Yale) where ANCC and 24 h urine copper excretion (UCE) data were available. ANCC was determined from serum from patients on zinc (n=13) or trientine (n=8) therapy using a previously described novel assay based on copper protein speciation and inductively coupled plasma mass spectrometry (1) Prospectively collected clinical and biochemical data and history of WD diagnosis and treatment were reviewed.

RESULTS


Data was available on ANCC and urine copper excretion in 21 treated WD patients (15 F). The average patient age was 42 y (range 12-75), and treatment for WD with zinc (n=13) averaged 10.4 y while those on trientine (n=8) averaged 7.8 y. ANCC in all ranged from 0.22 to 1.66 uM/L, with the average for zinc treatment being significantly lower at 0.74 ± 0.29 versus 1.21 ± 0.37 for those on trientine (p=0.009). For reference, the ANCC range for a non-WD population was determined to be 1.17 to 3.87 uM/L. As we assumed, UCE showed a poor correlation with ANCC (r=0.21 for zinc, 0.10 for trientine), though average values of UCE were in expected ranges for most long-term treated patients (66.6 ± 20.5 ug for zinc, 398.9 ± 236.2 ug for trientine).



ANCC Determination:
Serum proteins were
separated by anion exchange
chromatography and copper
content of protein peaks
determined by ICP-MS.
Internal standardization is
possible using natural sulfur
and copper isotopes.

CONCLUSIONS

- ANCC may be a useful alternative to UCE for patient monitoring as UCE values are highly variable, especially in patients on chelation therapy. This requires further validation in a larger cohort of WD patients on different treatments.
- 2) Counter to expectations, we observed a wider range of ANCC concentrations between individual therapies for WD, possibly due to the small sample size initially evaluated. Further evaluation is needed to determine if the range should be consistent between therapies.
- 3) For ANCC to be an accepted biomarker for WD, further evaluation is needed to determine the ranges of values that correlate with clinical and biochemical stability in treated patients.

Figures: Shown are the UCE (y axis) and ANCC (X axis) for patients on trientine and zinc therapy for their Wilson disease. Note similarity of ANCC range and wider range for UCE, particularly in patient on chelation therapy

REFERENCE

Solovyev N, Ala A, Schilsky M, Mills C, Willis K,
 Harrington CF. Analytica Chimica Acta. 1098:27-36.2020

Contacts (E-mail)

Michael.Schilsky@Yale.edu

Chris.Harrington1@nhs.net